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ABSTRACT�
Semantic segmentation is an emerging field in the 

computer vision community where one can segment and label 
an object all at once. In this paper, we propose a semantic 
segmentation algorithm that takes into account both the 
hyperspectral images and the LiDAR data. In our 
segmentation framework, we propose a new energy function 
that is composed of two terms: a unary energy term and a 
pairwise energy term. The unary energy term provides the 
segmentation maps for the hyperspectral data as well as for 
the LiDAR data which is explained with Fisher Vectors. The 
pairwise spatial term uses both the UTM coordinates as well 
as the LiDAR data. Finally, the system is solved with graph-
cuts. We report the effect of the parameters in energy 
minimization and show that the best results are achieved with 
an SVM-MRF classifier among the several classifiers.  

 
Index Terms Semantic Segmentation, Hyperspectral 

image classification, LiDAR, Graph Cuts, Fisher Vectors. 
 

1.�INTRODUCTION 
Joint segmentation and classification of an image is 

called semantic segmentation, and it is an active research 
topic in the computer vision field [1] [2] [3]. This topic is very 
much in parallel to the interests of the hyperspectral 
community, who are interested in spectral-spatial 
segmentation, target identification and fusion. 
Hyperspectral imagery technology, by capturing information 
from hundreds of frequencies of light, provides valuable 
information on the material of the subject. The use of this 
information on remote sensing has been a highlighted topic 
of research in the recent years. Even though the information 
on hundreds of spectral bands of a surface can be stored 
within one pixel [4], factors such as atmospheric effects, 
changing light conditions, especially in the urban areas may 
cause misclassification and decrease the overall performance 
[5]. To overcome these negative effects, light detection and 
ranging (LiDAR) data is commonly fused together with 
hyperspectral data to overcome the weaknesses of both. 
LiDAR data, containing three dimensional spatial 

information of a scene, has been proven to be an excellent 
candidate to work together with the  
hyperspectral data [5]. 

The goal of our study is the fusion of LiDAR and 
hyperspectral datasets with the purpose of the semantic 
segmentation of hyperspectral images. In this study, we 
propose a novel unary term that includes both spectral 
attributes and LiDAR information, which is described by 
Fisher Vectors [6]. Also, we propose a pairwise term that 
considers both the spatial distance in UTM coordinates and 
the spectral distance of two pixels. Finally, this energy 
function is optimized with the Graph Cut algorithm [7], [8]. 

2.�RELATED�WORK�
There are several studies that make use of graph-cuts 

methods using hyperspectral datasets alone. In [9], 
probabilistic SVM is used for spectral classification, and a 
spatial energy term is used for spatial information. In [10], 
SVM is used for spectral classification and subspace 
Multinomial Logistic Regression (MLRsub) [3] is used for 
spatial classification. Classifier results are fused together 
within a Markov Random Field (MRF) Model [11]. Since in 
both cases, probabilistic SVM and MLRSub are proven to be 
a good candidate for the unary term of the energy function, 
we also use these two classifiers for the spectral term in our 
experiments. 

The fusion of LiDAR and hyperspectral data is 
exploited in [5], [16]. In [5], the  morphological 
attributes [12] of both LiDAR and hyperspectral data and 
classify the data using MLRsub classifier and MRFs.  

Different from these related approaches, instead of 
performing fusion during feature extraction, we combine the 
results of energy descriptors and jointly solve the label 
problem. With this approach, we guide the spectral 
classification results to be consistent with the spatial 
properties, including elevation. In doing so, the fusion task is 
seamlessly integrated into the energy model for semantic 
segmentation. 

3.�PROPOSED�METHOD�
Semantic segmentation task is defined as assigning each 

pixel in an image to a class from a previously determined 
class set ܥ = ,ଵܥ } ,ଶܥ ଷܥ  ௡ }. To achieve this, we use theܥ …
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Markov Random Field (MRF) assumption, and define the 
maximum a posteriori (MAP) labeling of the random field as: 
∗ݕ  =  argmax௬ ∈ ஼ ܲ( ܻ = ( ࢞ | ݕ =  argmin௬ ∈ ஼  (ݕ)ܧ

 
where x is the observed data vector ࢞ = ,ଵݔ } ,ଶݔ ଷݔ  .{ ௞ݔ …
and y is the assigned class. With Z being a normalization 
constant, the energy function  
 
(ݕ)ܧ  = −ln (ܲ( ܻ = ܺ| ݕ = (( ݔ − ln (ܼ)   
 
can be written as two terms: 
(ݕ)ܧ  = (ݕ)௨௡௔௥௬ܧ   (ݕ)௣௔௜௥௪௜௦௘ܧ +
 

The unary term of the energy function is the 
probabilistic classification of every pixel to a certain class. In 
our experiments, we have experimented both with the 
probabilistic SVM classifier [13] and also the MLRSub. 
Other classifiers may also be used for this term, however we 
chose SVM and MLRSub due to their proven track record [5] 
[9] for this task.  

In the unary term, we consider two separate unary 
probabilistic distributions, namely ܲ( ܥ௜ | ࢏࢞)  for spectral 
and ܲ( ܥ௜ | ࢏࢙) for LiDAR data. Here ࢏࢞ are the hyperspectral 
data; and ࢏࢙  are the intensity and elevation information, 
extracted from LiDAR data, which is expanded using Fisher 
Vectors. Therefore, our proposed unary probability 
distribution energy is as follows: 

= ௨௡௔௥௬ܧ  ߙ] ݇−  ln(ܲ( ܥ௜ | ࢏࢞) ) + (1 − (ߙ ln(ܲ( ܥ௜ | ࢏࢙))]      (1) 
  
where k is a constant term for emphasizing the weight of the 
unary term with respect to the pairwise term, and ߙ is a 
constant that is used to adjust the weights between the two 
probability distributions. In the rest of this paper, we will 
refer to the unary energy term as dSVM or dMLRsub 
depending on which function we use as the classifier. 

The pairwise term is concerned about the spatial 
relation of the pixel with its neighboring pixels. The standard 
energy expression for this term is: 

,௜ݔ)௣௔௜௥௪௜௦௘ܧ  (௝ݔ =  ෍ 1 )ߚ − ,௜ܥ )ߜ ࢏ࡺ ೕࣕ࢞( ( ௝ܥ  

where, ௜ܰ  is the set of neighboring pixels, ߜ is the Kronecker 
delta function and ߚ is a positive constant which determines 
the weight of contribution of the pairwise data to the overall 
energy.   

The pairwise term acts as a regularization term. As it is 
usually accepted that neighboring pixels should have higher 
probability of having the same label, this term penalizes two 
neighboring pixels that have different class labels. We 
assume that neighboring pixels having different elevations 
should have lower probability of being assigned to the same 
label. For example, asphalt on a rooftop or asphalt on the 

ground should be assigned to different segmentations. 
LiDAR elevation information might help classify correctly 
the pixels that have different elevation. Hence, we have 
modified the standard pairwise energy function to penalize 
neighboring pixel pairs having their difference of elevations. 
Our proposed energy function is as follows: 
,௜ݔ௣௔௜௥௪௜௦௘൫ܧ  ௝൯ݔ =  ∑ (1 − ,௜ܥ൫ߜ (௝൯ܥ ൭ exp ߚ ቀ−݀൫ݔ௜, ,exp (−݀൫ℎ௜ ߟ + ௝൯ቁݔ ℎ௝൯)൱࢞ೕࣕ ࢏ࡺ       (2) 

 
Here, ݀൫ℎ௜, ℎ௝൯ provides the 3D spatial distance of two 

neighbors, where hi are 3 band instances containing UTM 
coordinates and elevation of the pixel. In implementation, 
absolute UTM coordinates are not actually necessary, so we 
simply use the resolution of the pixels and the height.   Hence 
for each pixel, the following rule applies for its coordinate in 
3D space: 

(݌)ܷ  =  [ ௣ ߳ܿ௣ ℎ௣ݎ߳ ]
 

where p is the pixel in focus, ݎ௣ is the row, ܿ௣ is the column 
of the pixel p in the image, ℎ௣ is the height and ߳ is the pixel 
resolution of the sensor. In our case, ߳ = 2.5.   ݀൫݅ݔ,  ൯ on݆ݔ
the other hand, is the spectral distance. Tarabalka and Rana 
[6] consider 3 different alternatives for this distance; such as 
the SAM, SID and L2-norm. Also, ߟ is a user defined 
constant which adjusts the weight between these two distance 
functions.  

4.�DATASET�AND�EXPERIMENTS�
We are using the University of Houston dataset 

provided by the 2013 GRSS Data Fusion Contest [14]. The 
dataset has both LiDAR and hyperspectral data, contains 15 
classes and around 200 training and 1000 test pixels for each 
class. There are 144 hyperspectral bands in the data.  

Our workflow is as follows: first, LiDAR intensity and 
elevation information is extracted and simply concatenated, 
generating a 4 band data which consists of first, average, last 
returns of the LiDAR intensity together with the elevation. 
We then obtain local descriptors from this data using Fisher 
Vectors. Both Lidar and Hyperspectral datasets are then 
processed with the HySime algorithm [15]. The training and 
validation data is used to train probabilistic SVM and 
MLRSub classifiers separately. We used the method 
proposed in [3] for the implementation of MLRSub classifier. 
The impact of ߙ in (1) on overall performance can be viewed 
in Figure 1. 

For the pairwise term; our experiments showed that 
SAM proved to be the best distance calculation method for 
both MLRSub and SVM trained unary distributions. The 
other methods were also not too far behind but since their 
comparison is not the scope of this study, we will not be ߟ weight terms for 
the pairwise data is experimentally detected and their impact 
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on overall performance is also recorded. Unfortunately, in our ߟ in (2) did not show a remarkable 

leads to same accuracies when 0 = ߟ. This can be observed in 
Figure 2. 

 

 
Figure�1:��Impact of alpha. The best value of alpha found for 

�

(a)   

(b) 

Figure 2:.  The Impact of β and ࣁ (a) SVM, (b) MLRSub 

 

We also compared our results to the classical SVM-
MRF and MLRSub-MRF methods in Figure 3. We observed 
that, dSVM-MRF outperformed other methods. The 
dMLRSub-MRF method however showed the most drastic 
improvement from its unary stage. Note that there is a cloud 
that covers most of the commercial, railway and highway 
class test pixels. The dSVM and dMLRSub performed much 
better in classifying these against other methods. Fisher 
Vectors improved the LiDAR unary classification 
performance in MLRSub classifier but did not perform better 
in SVM classifier in our experiments; however, we believe in 
our future studies, we can optimize for higher accuracies.  

5.�CONCLUSION�
In this paper, we introduced a novel semantic 

segmentation approach, where we can both segment and label 
pixels at the same time. We introduced an MRF based 
approach that combines the spectral information of 
hyperspectral image and the UTM coordinate, elevation 
information and intensity information of the LiDAR data 
during energy minimization. Also, we used Fisher Vectors in 
order to improve the unary performance of the classified 
LiDAR data. Although the optimization in pairwise term did 
not lead much better performance than classical MRF 
methods, we concluded that fusion of two unary terms 
improve the overall accuracy. In our future studies, we wish 
to improve the performance of this term as well as the 
pairwise term. 
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SVM-

Spectral 
MLRsb-
Spectral 

SVM-
LiDAR 

MLRSb-
LiDAR 

dSVM 
(α = 0.4) 

dMLRSb 
(α = 0.6) 

SVM-
MRF 

MLRsb-
MRF 

dSVM-
MRF 

dMLRsb
-MRF 

healthy gras 82.431 78.822 54.131 75.594 82.716 78.822 83.096 79.012 83.096 83.001 
stressd grass 83.271 75.752 36.466 51.41 85.432 74.342 84.117 84.962 91.353 81.861 
synth grass 98.416 98.218 98.02 88.713 99.208 97.822 99.208 99.406 99.802 99.01 

tree 92.424 91.667 68.087 86.837 94.413 98.295 93.277 93.277 97.254 99.716 
soil 98.485 97.159 61.269 11.364 97.633 96.307 99.905 99.811 100 99.053 

water 88.112 79.021 21.678 1.3986 80.42 82.517 88.811 91.608 90.909 91.608 
residential 80.877 81.25 55.877 42.351 80.224 79.571 84.981 85.821 90.951 87.407 
commercial 54.131 36.752 65.812 6.4577 77.303 59.544 45.394 24.881 78.158 69.136 

road 74.882 65.534 14.731 1.983 79.037 59.773 88.48 85.175 94.618 85.552 
highway 60.811 56.371 23.938 3.2819 57.625 65.637 65.927 41.313 66.216 74.324 
railway 90.987 64.421 52.941 57.97 83.681 65.655 82.543 76.565 93.548 57.685 

parking lot 1 79.155 34.006 22.959 0.0961 82.229 61.095 92.315 62.248 93.66 76.081 
parking lot 2 65.614 47.368 63.509 63.86 74.386 61.404 75.439 69.825 87.719 79.649 
tennis court 97.571 95.951 82.591 67.611 97.976 95.142 98.381 97.976 98.381 98.381 

running trck 95.56 95.56 72.727 10.994 93.658 93.023 99.366 97.252 96.617 99.577 

OA 81.299 70.772 49.783 36.238 83.357 75.912 83.676 76.051 89.866 83.275 
κ 0.798 0.684 0.460 0.312 0.820 0.739 0.824 0.740 0.890 0.819 

Figure�3�­�Table�of�Overall�Accuracies�and�Kappa�Values.�Best�results�are�bolded. 
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